Evaluation of Sox2 binding affinities for distinct DNA patterns using steered molecular dynamics simulation

نویسندگان

  • Dhanusha Yesudhas
  • Muhammad Ayaz Anwar
  • Suresh Panneerselvam
  • Han‐Kyul Kim
  • Sangdun Choi
چکیده

Transcription factors (TFs) are gene expression regulators that bind to DNA in a sequence-specific manner and determine the functional characteristics of the gene. It is worthwhile to study the unique characteristics of such specific TF-binding pattern in DNA. Sox2 recognizes a 6- to 7-base pair consensus DNA sequence; the central four bases of the binding site are highly conserved, whereas the two to three flanking bases are variable. Here, we attempted to analyze the binding affinity and specificity of the Sox2 protein for distinct DNA sequence patterns via steered molecular dynamics, in which a pulling force is employed to dissociate Sox2 from Sox2-DNA during simulation to study the behavior of a complex under nonequilibrium conditions. The simulation results revealed that the first two stacking bases of the binding pattern have an exclusive impact on the binding affinity, with the corresponding mutant complexes showing greater binding and longer dissociation time than the experimental complexes do. In contrast, mutation of the conserved bases tends to reduce the affinity, and mutation of the complete conserved region disrupts the binding. It might pave the way to identify the most likely binding pattern recognized by Sox2 based on the affinity of each configuration. The α2-helix of Sox2 was found to be the key player in the Sox2-DNA association. The characterization of Sox2's binding patterns for the target genes in the genome helps in understanding of its regulatory functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation

The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting ...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route

Understanding binding mechanisms between enzymes and potential inhibitors and quantifying protein-ligand affinities in terms of binding free energy is of primary importance in drug design studies. In this respect, several approaches based on molecular dynamics simulations, often combined with docking techniques, have been exploited to investigate the physicochemical properties of complexes of p...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017